def Is Sarting Algo $(a-j a v a)$:
def Varifyte swing Ago (a.jara, proof):
try ajown (r.tat) 'bad iercase T.ket
\cdots... reton $y_{s / 1} / \mathrm{no}$
returns ys/no Qat525 Coflg
NP-hardness
def Verify Is Nonsoleo Afod (a.java., T.t.xt):
out $=a \cdot j a v a(T \cdot+x t)$

$$
a \leqslant b \quad \begin{array}{ll}
\text { if } b \leqslant 10, \quad a \leqslant 10 \\
& \text { if } a \geqslant 19, \quad b \geqslant 19
\end{array}
$$

Canthis hoppen: 35 UM can't be solved in $O\left(n^{1 \cdot 9)} \leftarrow\right.$ contradicts
$3 S U M<=C O L L$ reduction
if coll is eapy, $3 s \cup M$ is eary
if $3 S U M$ is hard, CoLh is hard

- If COLL can be solved in time $O\left(n^{1.9}\right)$ then $3 S U M$ can be solved in ??? \&ef Afgo3sun(A): X. If COLL can't be solved in time $O\left(n^{1.9}\right)$ then \ldots ? ?? $n=|n|{ }^{n / 9)}$ hime $O(n)$
x. If 3SUM can be solved in time $O\left(n^{1.9}\right)$ then ???
?. If 3SUM can't be solved in time $O\left(n^{1.9}\right)$ then ??? $* O\left(|p|^{1 \cdot 9}\right)$
 cOLL can't be solved in $0\left(n^{19}\right)=O\left(n^{1 \cdot 9}\right)$ Toral: $O\left(n^{1 \cdot 9}\right)$
- Whether 3SUM can or cannot be solved in time $O\left(\mathrm{n}^{1.9}\right)$
- Whether COLL can or cannot be solved in time $O\left(n^{1.9}\right)$

Suppose some bright student finds a super-fast algorithm for COLL. Then what ? Suppose some bright student finds a $\mathrm{O}\left(\mathrm{n}^{1.9}\right)$ lower bound for 3SUM. Then what ? Suppose some bright student finds that COLL $<=3$ SUM. Then what ?

$3 \mathrm{COL}<=4 \mathrm{COL}$ using a $\mathrm{O}(\mathrm{V}+\mathrm{E})$ reduction. $\mathrm{E}_{4}+V_{6} \mathrm{E}_{G^{\prime}} \mathrm{F}^{30 \%}\left(\mathrm{E}_{6}\right)$
\rightarrow If 4 COL can be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{200}\right)$ then 3 COL can be solved in ???
X If 4 COL can't be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{200}\right)$ then ... ??? $O(C V+E)-$-00 $)$
X If 3COL can be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{200}\right)$ then ???
\rightarrow If 3COL can't be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{200}\right)$ then ??? $\rightarrow 4 \mathrm{col}$ canst be solved Reality: We do not really know ... in $\left.O(V+R)^{200}\right)$.

- Whether 3COL can or cannot be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{\mathrm{k}}\right)$ for any k
- Whether 4COL can or cannot be solved in time $\mathrm{O}\left((\mathrm{V}+\mathrm{E})^{\mathrm{k}}\right)$ for any k
\Rightarrow If 4 col camber solved in polyhime, then 3 col combe sowed in polyghine \Rightarrow If 3 col cant be solved infoolytime, then $4 C O L$ cant be solved fohythme. $4 C O L \leqslant_{p} 3 c o L: \Rightarrow$ If $3 \operatorname{coL} \in \mathbb{P}$, then 4 col $\in \mathbb{P} \mathbb{P}$

P vs NP problem

P : problems for which we know a polytime algorithm
NP : problems for which we know a fast (polytime) process for yes-answer verification
S proof: 2 coloring
ago.
Given a graph G, can it be 2-coloured ? If yes, give me a proof that be verified fast.
Given a graph G, can it be 3-coloured ? If yes, give me a proof that be verified quickly.
Given an array A, is A sorted ? If yes, give me a proof that be verified quickly.
Given a graph G, doss G have a clique wits at lear K vertices?

Given anaray Andean algorithm Aldo, does Algor() return a sorted version of its input? If yes ...
Given a partially played chessboard, can white win from here (no matter what black plays)? If yes $\not \underset{\chi}{ }$ Given a 2-colourable graph G, can any 2 -coloring of G be extended to a 3 -colouring of G ? If yes ...

* Given a digraph G, can G be topologically sorted ? If yes, give a proof that can be polytime verified.

Here is how you construct and explain the verification algorithms for NP. Take the example of 2COLOR. def Verify2COLOR(instance G, proof C): // G is a graph with n vertices and C[1...n] lists the colour of each vertex

If C uses more than 2 colours, return false
For every edge $e=(u, v)$ in G :
If C[u] = C[v]: return false
return true
Correctness claim:
(a) If G is 2 colorable, then there exists a proof C such that Verify2COLOR(G,C) returns true,
(b) If G is not 2 colorable, then for any G and any C, Verify2COLOR returns false.

Proof of (a): Let G be 2 colorable. So, define C as the list of the colours of its vertices. Since C is a valid colouring and uses only 2 colours, Verify2COLOR(G,C) will return true.

Proof of (b): We will prove the contrapositive of the claim. Suppose Verify2COLOR(G,C) returns true for some G and C . Then C must be using 2 colours and every edge of the graph must be assigned different colours. Hence, G must be 2 colorable.

Reading Assignment: NP-completeness chapter

Π is NP-hard \Longleftrightarrow If Π can be solved in polynomial time, then $P=N P$

To prove that problem A is NP-hard, reduce a known NP-hard problem to A.
The cycle can be broken using a formal definition of NP-hardness. For practical purpose, there are thousands of known NP-hard problems that can be used.

If no suitable problem is found, try a reduction from 3SAT to π ! Last lecture: reductions from 3COLOR to 4COLOR and 2SAT to 3SAT.

Q: 3COLOR is known to be NP-hard. What can you say about 4COLOR from this statement?
Q: 2SAT is known to be polynomial-time. What can you say about 3SAT from this statement?
Q:3SAT is known to be NP-hard. What can you say about 2SAT from this statement?
NP-complete = NP + NP-hard

Summary of NP-completeness

