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3SUM <= COLL reduction

T&LS,f&%éﬂM S . 0 does (1, .
3SUM @COL using a O(Cﬁf rewction. A o o Yo sk Gf 250 : ducc;\/(lf)w & Yoo inak.
. If COLL can be solved in time O(n'”) then 3SUM SATL be solved in ?¢? ﬂdy Aot oM Ry

X+ If COLL can’t be sglvpéﬁm%ﬁ%ime O(n'?) then ... 22? v\SN) e 0n) P-Rorrar{h)

X+ If 3SUM can be solved in time O(n'?) then ??? -9)

? - If 3SUM can’t be solved in time O(n'”) then 2?7 \R* ?( 4 |-_g) »
Reality: We do not really know ... COLL cmif &%WMJ&SA O\ O (n Té=) % 0w )

e Whether 3SUM can or cannot be solved in time O(n'?)
e Whether COLL can or cannot be solved in time O(n'?)

Suppose some bright student finds a super-fast algorithm for COLL. Then what ?
Suppose some bright student finds a O(n'”) lower bound for 3SUM. Then what ?
Suppose some bright student finds that COLL <= 3SUM. Then what ?



INDEPENDENT NODE SET @ TEEDBACK NODE SET
TRAVELING SALESMAN

Karp
1972

-
€ CIRCUIT SATISFIABILITY >
- o
1972
s oA 5 o
0-1 INTEGER PROGRAMMING

1972
Karp Karp
1972

1972
SATISFIABILITY
Cook 1971

OPTIMAL LINEAR ASSIGMENT

‘ehuda, Moran Karp

1972

DOMINATING SET

DIRECTED HAMILTONIAN CIRCUIT

3-SATISFIABILITY

Garey.Johnson, Stockmeyer
1974 Py Jehnson, S tockmeyer

a7 Ga
1974
T D
1974 Karp

Garey.Johnson, S tockmes
Py 1972

SUBGRAPH ISOMORPHIS M
A
OPTIMAL LINEAR ASSIGNMENT CHROMATIC NUMBER UNDIRECTED HAMILTONIAN CIRCUIT
(Simple) Karp

1972

Karp
1972

Karp
3-DIMENSIONAL MATCHING a7z @

TRAVELING SALESMAN
(triangle inequality)

OLOURABILITY
Karp

1972

K-PARTITION
Brown \

1971
E

Demain, Hohefperger
Liben-Nowell (2Q08)

@ JOB SEQUENCING
Karp PARTITION TETRIS

1972
(offline)



AN def Maeaed (G
(+8) — G edurta (4)

3CGOL <= 4COL reduction -0 (
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Reality: We do not really know ... (V4RP™),

e Whether 3COL can or cannot be solved in time O((V+E)X) for any k
e Whether 4COL can or cannot be solved in time O((V+E)¥) for any k
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PROB is NP-hard < If PROB cah be solved in pol’y time, then eve @. roblem can be solved in poly time.

A

7 P : problems for which we know a polytime algorithm
NP : problems for which we know a fast (polytime) process for yes-answer verification

L Acd
Given a graph G, can its?:)e 2-coloured ? If yes, give me a prooof\l‘?gat be verified fast.
Given a graph G, can it be 3-coloured ? If yes, give me a proof that be verified quickly.
Given an array A, is A sorted ? If yes, give me a proof that be verified quickly.
Ginon 0 b G (doo 6 e & Lifpe wth ohlgad K worhing) 7
Given an-array-A-and-an algorithm Algo, does Algo( ) return a sorted version of its input? If yes ..
Given a partially played chessboard, can white win from here (no matter what black plays)? If yes X
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* Given a digraph G, can G be topologically sorted ? If yes, give a proof that can be polytime verified.



Here is how you construct and explain the verification algorithms for NP. Take the example of 2COLOR.
def Verify2COLOR(instance G, proof C): // G is a graph with n vertices and C[1...n] lists the colour of each vertex
If C uses more than 2 colours, return false
For every edge e=(u,v) in G:
If C[u] = C[Vv]: return false
return true
Correctness claim:
(a) If G is 2 colorable, then there exists a proof C such that Verify2COLOR(G,C) returns true,
(b) If G is not 2 colorable, then for any G and any C, Verify2COLOR returns false.

Proof of (a): Let G be 2 colorable. So, define C as the list of the colours of its vertices. Since C is a valid
colouring and uses only 2 colours, Verify2COLOR(G,C) will return true.

Proof of (b): We will prove the contrapositive of the claim. Suppose Verify2COLOR(G,C) returns true for
some G and C. Then C must be using 2 colours and every edge of the graph must be assigned different colours.
Hence, G must be 2 colorable.



Reading Assignment: NP-completeness chapter

To prove that problem A is NP-hard, reduce a known NP-hard problem to A.

The cycle can be broken using a formal definition of NP-hardness.
For practical purpose, there are thousands of known NP-hard problems that can be used.
If no suitable problem is found, try a reduction from 3SAT to JC !
Last lecture: reductions from 3COLOR to 4COLOR and 2SAT to 3SAT.

Q: 3COLOR is known to be NP-hard. What can you say about 4COLOR from this statement?
Q: 2SAT is known to be polynomial-time. What can you say about 3SAT from this statement?
Q: 3SAT is known to be NP-hard. What can you say about 2SAT from this statement?

NP-complete = NP + NP-hard



Summary of NP-completeness

3-CNF SAT

Subset Problem

X and Y are NP-complete

X is NP and X is NP-hard
o All problems in NP have a reduction to X

Y is NP and Y is NP-hard
o  All problems in NP have a reduction to Y

X <Y (by definition a reduction exists)

Y < X (by definition a reduction exists)

If X can be solved in poly-time, then same for Y
If Y can be solved in poly-time, then same for X
If X can’t be solved in poly-time, same for Y

If Y can’t be solved in poly-time, same for X



