
CSE525 Lec19
NP-hardness

Debajyoti Bera (M19)
https://sites.google.com/a/iiitd.ac.in/cse525-m19

3SUM <= COLL reduction
3SUM <= COLL using a O(n) reduction.

If COLL can be solved in time O(n1.9) then 3SUM can be solved in ???
If COLL can’t be solved in time O(n1.9) then … ???
If 3SUM can be solved in time O(n1.9) then ???
If 3SUM can’t be solved in time O(n1.9) then ???

Reality: We do not really know …

● Whether 3SUM can or cannot be solved in time O(n1.9)
● Whether COLL can or cannot be solved in time O(n1.9)

Suppose some bright student finds a super-fast algorithm for COLL. Then what ?
Suppose some bright student finds a O(n1.9) lower bound for 3SUM. Then what ?
Suppose some bright student finds that COLL <= 3SUM. Then what ?

3COL <= 4COL reduction
3COL <= 4COL using a O(V+E) reduction.

If 4COL can be solved in time O((V+E)200) then 3COL can be solved in ???
If 4COL can’t be solved in time O((V+E)200) then … ???
If 3COL can be solved in time O((V+E)200) then ???
If 3COL can’t be solved in time O((V+E)200) then ???

Reality: We do not really know …

● Whether 3COL can or cannot be solved in time O((V+E)k) for any k
● Whether 4COL can or cannot be solved in time O((V+E)k) for any k

P vs NP problem

P : problems for which we know a polytime algorithm
NP : problems for which we know a fast (polytime) process for yes-answer verification

Given a graph G, can it be 2-coloured ? If yes, give me a proof that be verified fast.
Given a graph G, can it be 3-coloured ? If yes, give me a proof that be verified quickly.
Given an array A, is A sorted ? If yes, give me a proof that be verified quickly.

Given an array A and an algorithm Algo, does Algo() return a sorted version of its input? If yes ...
Given a partially played chessboard, can white win from here (no matter what black plays)? If yes …
Given a 2-colourable graph G, can any 2-coloring of G be extended to a 3-colouring of G? If yes …

* Given a digraph G, can G be topologically sorted ? If yes, give a proof that can be polytime verified.

PROB is NP-hard ⇔ If PROB can be solved in poly time, then every NP problem can be solved in poly time.

Here is how you construct and explain the verification algorithms for NP. Take the example of 2COLOR.
def Verify2COLOR(instance G, proof C): // G is a graph with n vertices and C[1...n] lists the colour of each vertex
 If C uses more than 2 colours, return false
 For every edge e=(u,v) in G:
 If C[u] = C[v]: return false
 return true
Correctness claim:
(a) If G is 2 colorable, then there exists a proof C such that Verify2COLOR(G,C) returns true,
(b) If G is not 2 colorable, then for any G and any C, Verify2COLOR returns false.

Proof of (a): Let G be 2 colorable. So, define C as the list of the colours of its vertices. Since C is a valid
colouring and uses only 2 colours, Verify2COLOR(G,C) will return true.

Proof of (b): We will prove the contrapositive of the claim. Suppose Verify2COLOR(G,C) returns true for
some G and C. Then C must be using 2 colours and every edge of the graph must be assigned different colours.
Hence, G must be 2 colorable.

Reading Assignment: NP-completeness chapter

The cycle can be broken using a formal definition of NP-hardness.
For practical purpose, there are thousands of known NP-hard problems that can be used.

If no suitable problem is found, try a reduction from 3SAT to ㄫ !
Last lecture: reductions from 3COLOR to 4COLOR and 2SAT to 3SAT.

Q: 3COLOR is known to be NP-hard. What can you say about 4COLOR from this statement?
Q: 2SAT is known to be polynomial-time. What can you say about 3SAT from this statement?
Q: 3SAT is known to be NP-hard. What can you say about 2SAT from this statement?

NP-complete = NP + NP-hard

Summary of NP-completeness

X and Y are NP-complete

● X is NP and X is NP-hard
○ All problems in NP have a reduction to X

● Y is NP and Y is NP-hard
○ All problems in NP have a reduction to Y

● X ≤ Y (by definition a reduction exists)
● Y ≤ X (by definition a reduction exists)
● If X can be solved in poly-time, then same for Y
● If Y can be solved in poly-time, then same for X
● If X can’t be solved in poly-time, same for Y
● If Y can’t be solved in poly-time, same for X

